资源类型

期刊论文 25

年份

2023 7

2022 2

2021 5

2020 2

2019 1

2018 3

2016 1

2015 1

2014 1

2007 1

展开 ︾

关键词

中国铅基反应堆 1

加速器驱动次临界系统 1

含钒钢渣 1

固溶体 1

富集 1

技术研发进展 1

晶体生长 1

钒富集相 1

铅铋共晶 1

展开 ︾

检索范围:

排序: 展示方式:

Dendritic BiVO4 decorated with MnOx co-catalyst as an efficient hierarchical catalyst for photocatalytic ozonation

Jin Yang, Xuelian Liu, Hongbin Cao, Yanchun Shi, Yongbing Xie, Jiadong Xiao

《化学科学与工程前沿(英文)》 2019年 第13卷 第1期   页码 185-191 doi: 10.1007/s11705-018-1713-z

摘要: An appropriate co-catalyst can significantly promote the photocatalytic efficacy, but this has been seldom studied in the visible-light photocatalysis combined with ozone, namely photocatalytic ozonation. In this work, a dendritic bismuth vanadium tetraoxide (BiVO ) material composited with highly dispersed MnO nanoparticles was synthesized, and its catalytic activity is 86.6% higher than bare BiVO in a visible light and ozone combined process. Catalytic ozonation experiments, ultra-violet-visible (UV-Vis) diffuse reflectance spectra and photoluminescence spectra jointly indicate that MnO plays a triple role in this process. MnO strengthens the light adsorption and promotes the charge separation on the composite material, and it also shows good activity in catalytic ozonation. The key reactive species in this process is ·OH, and various pathways for its generation in this process is proposed. This work provides a new direction of catalyst preparation and pushes forward the application of photocatalytic ozonation in water treatment.

关键词: manganese oxide     bismuth vanadium tetraoxide     photocatalytic ozonation     hydroxyl radical     co-catalyst    

Coextraction of vanadium and manganese from high-manganese containing vanadium wastewater by a solvent

Zishuai Liu, Yimin Zhang, Zilin Dai, Jing Huang, Cong Liu

《化学科学与工程前沿(英文)》 2020年 第14卷 第5期   页码 902-912 doi: 10.1007/s11705-019-1887-z

摘要: High-manganese containing vanadium wastewater (HMVW) is commonly produced during the vanadium extraction process from vanadium titano-magnetite. HMVW cannot be reused and discharged directly, and is harmful to the environment and affect product quality due to heavy metals in the wastewater. The wastewater is usually treated by lime neutralization, but valuable metals (especially V and Mn) cannot be recovered. In this study, an efficient and environmentally friendly method was developed to recover valuable metals by using a solvent extraction-precipitation process. In the solvent extraction process, 98.15% of vanadium was recovered, and the V O product, with a purity of 98.60%, was obtained under optimal conditions. For the precipitation process, 91.05% of manganese was recovered as MnCO which meets the III grade standard of HG/T 2836-2011. Thermodynamic simulation analysis indicated that MnCO was selectively precipitated at pH 6.5 while Mg and Ca could hardly be precipitated. The results of X-ray diffraction and scanning electron microscopy demonstrated that the obtained V O and MnCO displayed a good degree of crystallinity. The treated wastewater can be returned for leaching, and resources (V and Mn) in the wastewater were utilized efficiently in an environmentally friendly way. Therefore, this study provides a novel method for the coextraction of V and Mn from HMVW.

关键词: high-manganese containing vanadium wastewater     solvent extraction     carbonate precipitation     vanadium titano-magnetite     valuable metal recovery    

Surface modification by ligand growth strategy for dense copper bismuth film as photocathode to enhance

《能源前沿(英文)》 doi: 10.1007/s11708-023-0893-5

摘要: Hydrogen production from photoelectrochemical (PEC) water splitting has been regarded as a promising way to utilize renewable and endless solar energy. However, semiconductor film grown on photoelectrode suffers from numerous challenges, leading to the poor PEC performance. Herein, a straightforward sol-gel method with the ligand-induced growth strategy was employed to obtain dense and homogeneous copper bismuthate photocathodes for PEC hydrogen evolution reaction. By various characterizations, it was found that the nucleation and surface growth of CuBi2O4 layer induced by 2-methoxyethanol ligand (2-CuBi2O4) demonstrated a decent crystallinity and coverage, as well as a large grain size and a low oxygen vacancy concentration, leading to the good ability of light absorption and carrier migration. Consequently, under simulated sunlight irradiation (AM1.5G, 100 mW/cm2), the 2-CuBi2O4 photocathode achieved an enhanced photocurrent density of −1.34 mA·cm−2 at 0.4 V versus the reversible hydrogen electrode and a promising applied bias photon-to-current efficiency of 0.586%. This surface modification by ligand growth strategy will shed light on the future design of advanced photoelectrodes for PEC water splitting.

关键词: copper bismuthate     photocathode     ligand growth strategy     dense film     PEC    

Mechanical properties of vanadium-alloyed austempered ductile iron for crankshaft applications

《机械工程前沿(英文)》 2023年 第18卷 第3期 doi: 10.1007/s11465-023-0746-2

摘要: This study focused on the development of austempered ductile iron (ADI) with desirable combination of mechanical properties for crankshaft applications by the combined effect of vanadium (V) alloying and an optimized heat treatment process. The produced unalloyed GGG60, 0.15% V-alloyed GGG60 (V-15), and 0.30% V-alloyed GGG60 samples were subjected to austenitizing at 900 °C for 1 h and subsequent austempering processes at 250, 300, and 350 °C for 15, 30, 60, 90, and 180 min. As a result of these austempering processes, different bainitic structures were obtained, which led to the formation of diverse combinations of mechanical properties. The mechanical properties of the austempered samples were tested comprehensively, and the results were correlated with their microstructures and the stability of the retained austenite phases. From the microstructural observations, the V-alloyed samples exhibited a finer microstructure and a more acicular ferrite phase than unalloyed samples. The V addition delayed the coarsening of the acicular ferrite structures and considerably contributed to the improvement of the mechanical properties of GGG60. Moreover, the X-ray diffraction results revealed that the retained austenite volume and the carbon enrichment of austenite phases in ADI samples were remarkably affected by the addition of vanadium. The increase in volume fraction of retained austenite and its carbon content provided favorable ductility and toughness to V-15, as confirmed by the elongation and impact test results. Consequently, the dual-phase ausferrite microstructure of V-15 that was austempered at 300 °C for 60 min exhibited high strength with substantial ductility and toughness for crankshaft applications.

关键词: austempered ductile iron (ADI)     vanadium alloying     mechanical properties     crankshafts     retained austenite    

Highly efficient and selective removal of vanadium from tungstate solutions by microbubble floating-extraction

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 581-593 doi: 10.1007/s11705-022-2235-2

摘要: Selective separation of dissolved tungsten and vanadium is of great significance for the utilization of the secondary resources of these elements. In this work, selective removal of vanadium from tungstate solutions via microbubble floating-extraction was systematically investigated. The results indicated that vanadium can be more easily mineralized over tungsten from tungstate solutions using methyl trioctyl ammonium chloride as mineralization reagent under weak alkaline conditions. Owing to the higher bubble and interface mass transfer rates, high-efficiency enrichment and deep separation of vanadium could be achieved easily. Additionally, the deep recovery of tungsten and vanadium from the floated organic phase could be easily realized using a mixed solution of sodium hydroxide and sodium chloride as stripping agents. The separation mechanism mainly included the formation of hydrophobic complexes, their attachment on the surface of rising bubbles, and their mass transfer at the oil–water interface. Under the optimal conditions, the removal efficiency of vanadium reached 98.5% with tungsten loss below 8% after two-stage microbubble floating-extraction. Therefore, the microbubble floating-extraction could be an efficient approach for separating selectively vanadium from tungstate solutions, exhibiting outstanding advantages of high separation efficiency and low consumption of organic solvents.

关键词: tungsten     vanadium     selective separation     reagent mineralization     microbubble floating-extraction    

Spontaneous polarization enhanced bismuth ferrate photoelectrode: fabrication and boosted photoelectrochemical

《能源前沿(英文)》 2021年 第15卷 第3期   页码 781-790 doi: 10.1007/s11708-021-0782-8

摘要: In this paper, the fabrication of a highly orientated Bi2Fe4O9 (BFO) photoelectrode in the presence of two-dimensional (2D) graphene oxide (GO) was reported. It was found that the GO can be used as a template for controlling the growth of BFO, and the nanoplate composites of BFO/reduced graphene oxide (RGO) with a high orientation can be fabricated. The thickness of the nanoplates became thinner as the ratio of GO increased. As a result, the ferroelectric spontaneous polarization unit arranges itself in the space in a periodic manner, leading to the formation of a polarization field along a special direction. Therefore, the created built-in electric field of the nanoplate composites of BFO/RGO is improved upon the increase of the amount of RGO. As expected, carrier separation is enhanced by the built-in electric field, therefore substantially enhancing the photoelectrochemical (PEC) activity of water splitting compared to pure BFO under the irradiation of visible-light.

关键词: bismuth ferrate     ferroelectric polarisation     photoelectrochemical (PEC) water splitting     graphene oxide (GO)     high orientation    

Enzyme@bismuth-ellagic acid: a versatile platform for enzyme immobilization with enhanced acid-base stability

《化学科学与工程前沿(英文)》 2023年 第17卷 第6期   页码 784-794 doi: 10.1007/s11705-022-2278-4

摘要: In situ encapsulation is an effective way to synthesize enzyme@metal–organic framework biocatalysts; however, it is limited by the conditions of metal–organic framework synthesis and its acid-base stability. Herein, a biocatalytic platform with improved acid-base stability was constructed via a one-pot method using bismuth-ellagic acid as the carrier. Bismuth-ellagic acid is a green phenol-based metal–organic framework whose organic precursor is extracted from natural plants. After encapsulation, the stability, especially the acid-base stability, of amyloglucosidases@bismuth-ellagic acid was enhanced, which remained stable over a wide pH range (2–12) and achieved multiple recycling. By selecting a suitable buffer, bismuth-ellagic acid can encapsulate different types of enzymes and enable interactions between the encapsulated enzymes and cofactors, as well as between multiple enzymes. The green precursor, simple and convenient preparation process provided a versatile strategy for enzymes encapsulation.

关键词: bismuth-ellagic acid     in situ encapsulation     enzyme@MOF biocomposites    

Crystal design of bismuth oxyiodide with highly exposed (110) facets on curved carbon nitride for the

《化学科学与工程前沿(英文)》 2022年 第16卷 第7期   页码 1125-1138 doi: 10.1007/s11705-021-2116-0

摘要: Crystalline materials with specific facet atomic arrangements and crystal facet structures exhibit unique functions according to their facet effects, quantum size effects and physical and chemical properties. In this study, a novel high-exposure (110) facet of bismuth oxyiodide (BiOI) was prepared (denoted as BiOI-110), and designed as nanosheets rich in oxygen vacancies by crystal facet design and regulation. Graphitic carbon nitride was designed as curved carbon nitride with dibromopyrazine, denoted as DCN, which contributed to a significant structural distortion in plane symmetry and improved the separation of charge carriers. Novel heterostructured BiOI-110/DCN nanosheets with a high-exposure (110) facet and abundant oxygen vacancies were successfully designed to enhance the photocatalytic degradation of organic pollutants. It was demonstrated that complete and tight contact between BiOI-110 and DCN was achieved by changing the size and crystal facet of BiOI. Oxytetracycline (OTC) and methyl blue dyes were used as targets for pollutant degradation, and 85.6% and 96.5% photocatalytic degradation efficiencies, respectively, were observed in the optimal proportion of 7% BiOI-110/DCN. The experimental results and electron spin resonance analysis showed that •O2 and h+ played a major role in the process of pollutant degradation. Additionally, high-resolution liquid chromatography-mass spectrography was used to identify the reaction intermediates of OTC, and the possible degradation pathway of this pollutant was proposed. Finally, the excellent reusability of BiOI-110/DCN nanomaterials was confirmed, providing a new approach for the removal of antibiotics that are difficult to biodegrade. Overall, crystal facet design has been proven to have broad prospects in improving the water environment.

关键词: high-exposure (110) facet     oxygen vacancy-rich     BiOI-110/DCN heterojunction     photocatalytic degradation     visible-light-response    

Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1221-1230 doi: 10.1007/s11705-023-2298-8

摘要: The vanadium redox flow battery with a safe and capacity-controllable large-scale energy storage system offers a new method for the sustainability. In this case, acetic acid, methane sulfonic acid, sulfonic acid, amino methane sulfonic acid, and taurine are used to overcome the low electrolyte energy density and stability limitations, as well as to investigate the effects of various organic functional groups on the vanadium redox flow battery. When compared to the pristine electrolyte (0.22 Ah, 5.0 Wh·L–1, 85.0%), the results show that taurine has the advantage of maintaining vanadium ion concentrations, discharge capacity (1.43 Ah), energy density (33.9 Wh·L–1), and energy efficiency (90.5%) even after several cycles. The acetic acid electrolyte is more conducive to the low-temperature stability of the V(II) electrolyte (177 h at −25 °C) than pristine (82 h at −2 °C). The –SO3H group, specifically the coaction of the –NH2 and –SO3H groups, improves electrolyte stability. The –NH2 and –COOH additive groups improved conductivity and electrochemical activity.

关键词: vanadium redox flow battery     functional groups     organic additives     energy density     stability    

Utilization of waste vanadium-bearing resources in the preparation of rare-earth vanadate catalysts for

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1793-1806 doi: 10.1007/s11705-022-2191-x

摘要: Recycling industrial solid waste not only saves resources but also eliminates environmental concerns of toxic threats. Herein, we proposed a new strategy for the utilization of petrochemical-derived carbon black waste, a waste vanadium-bearing resource (V > 30000 ppm (10 −6)). Chemical leaching was employed to extract metallic vanadium from the waste and the leachate containing V was used as an alternative raw material for the fabrication of vanadate nanomaterials. Through the screening of various metal cations, it was found that the contaminated Na+ during the leaching process showed strong competitive coordination with the vanadium ions. However, by adding foreign Ce3+ and Y3+ cations, two rare-earth vanadates, viz., flower-like CeVO4 and spherical YVO4 nanomaterials, were successfully synthesized. Characterization techniques such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, Fourier-transform infrared, and N2 physisorption were applied to analyze the physicochemical properties of the waste-derived nanomaterials. Importantly, we found that rare-earth vanadate catalysts exhibited good activities toward the semi-hydrogenation of α,β-unsaturated aldehydes. The conversion of cinnamaldehyde and cinnamic alcohol selectivity were even higher than those of the common CeVO4 prepared using pure chemicals (67.2% vs. 27.7% and 88.4% vs. 53.5%). Our work provides a valuable new reference for preparing vanadate catalysts by the use of abundant vanadium-bearing waste resources.

关键词: petrochemical solid wastes     vanadium recovery     resource utilization     nanomaterials     semi-hydrogenation    

Vanadium and molybdenum concentrations in particulate from Palermo (Italy): analytical methods using

Diana AMORELLO,Santino ORECCHIO

《环境科学与工程前沿(英文)》 2015年 第9卷 第4期   页码 605-614 doi: 10.1007/s11783-014-0703-8

摘要: The main purpose of this work was to develop a reliable method for the determination of vanadium (V) and molybdenum (Mo) in atmosphere particles or aerosols because they can not be readily measured using conventional techniques. For this research, 30 particulate samples were collected from five different stations located at Palermo, Italy. We used the catalytic adsorptive stripping voltammetry and differential pulsed voltammetry to measure V and Mo in atmospheric particulate, respectively. The represented method includes advantages of high sensitivity, high selectivity, simplicity, reproducibility, speed and low costs. The quantification limits for V and Mo are, respectively, 0.57 and 0.80 ng·m . The precision, expressed as relative standard deviation (RSD %), was about 2% for both metals. The mean recoveries of added V and Mo were about 99.5% and ranged from 97% to 101%. Vanadium concentrations in particulate samples collected in Palermo area ranged from 0.57 to 7.7 ng·m , while Mo concentrations were in the range 0.8–51 ng·m . In many cases the concentrations of two elements in the particulate samples fall below the detection limits. The mean concentrations for V and Mo in particulate samples, collected in Palermo area, were respectively 3.1 and 5.9 ng·m .

关键词: vanadium     molybdenum     particulate     voltammetry     Palermo    

Vanadium metabolism investigation using substance flow and scenario analysis

Fangfang ZHANG, Huiquan LI, Bo CHEN, Xue GUAN, Yi ZHANG

《环境科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 256-266 doi: 10.1007/s11783-013-0585-1

摘要: Vanadium is a vital strategic resource, and vanadium metabolism is an important part of the national socio-economic system of China. This study conducts accounting and scenario analysis on the life cycle of vanadium metabolism in China. Based on the characteristics of vanadium life cycle and substance flow analysis (SFA) framework, we present a quantitative evaluation of a static anthropogenic vanadium life cycle for the year 2010. Results show that anthropogenic vanadium consumption, stocks, and new domestic scrap are at 98.2, 21.2, and 4.1 kt, respectively; new scrap is usually discarded. The overall utilization ratio of vanadium is 32.2%. A large amount of vanadium is stockpiled into tailings, debris, slags, and other spent solids. A scenario analysis was conducted to analyze the future developmental trend of vanadium metabolism in China based on the SFA framework and the qualitative analysis of technology advancement and socio-economic development. The baseline year was set as 2010. Several indicators were proposed to simulate different scenarios from 2010 to 2030. The scenario analysis indicates that the next 20 years is a critical period for the vanadium industry in China. This paper discusses relevant policies that contribute to the improvement of sustainable vanadium utilization in China.

关键词: metabolism     vanadium industry     substance flow analysis     scenario analysis    

Synthesis of cobalt vanadium nanomaterials for efficient electrocatalysis of oxygen evolution

Meifeng Hao, Mingshu Xiao, Lihong Qian, Yuqing Miao

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 409-416 doi: 10.1007/s11705-017-1689-0

摘要:

A low-cost and high-activity catalyst for oxygen evolution reaction (OER) is the key to the water splitting technology for hydrogen generation. Here we report the use of three solvents, DMF, ethanol and glycol, in the solvothermal synthesis of three nano-catalysts, Co3(VO4)2-I, Co3(VO4)2-II, and Co3(VO4)2-III, respectively. Transmission electron microscope shows Co3(VO4)2-I, II, and III exist as ultrafine nanosheets, ultrathin nanofilms, and ultrafine nanosheet-comprised microspheres, respectively. These Co3(VO4)2 catalysts exhibit OER electrocatalysis, among which the Co3(VO4)2-II shows the lowest onset overpotential of 310 mV and only requires a small overpotential of 330 mV to drive current density of 10 mA/cm2. Due to their high surface free energy, the ultrathin nanofilms of Co3(VO4)2-II exhibits a good immobilization effect with the high electrocatalytic activity for OER.

关键词: Co3(VO4)2     oxygen evolution reaction     electrocatalyst     water splitting    

Vanadium(IV) solvent extraction enhancement in high acidity using di-(2-ethylhexyl)phosphoric acid with

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 56-67 doi: 10.1007/s11705-022-2185-8

摘要: Separation of vanadium from black shale leaching solution at low pH is very meaningful, which can effectively avoid the generation of alkali neutralization slag and the resulting vanadium loss. In this study, coordination mechanism of vanadium in acid leaching solution at low pH was investigated with the intervention of chloride ions. Under the conditions of pH 0.8, di-(2-ethylhexyl)phosphoric acid concentration of 20%, phase ratio of 1:2, and extraction time of 8 min, the vanadium extraction could reach 80.00%. The Fourier transform infrared and electrospray ionization results reveal that, despite the fact that the chloride ion in the leachate could significantly promote vanadium extraction, the chloride ion does not enter the organic phase, indicating an intriguing phenomenon. Among Cl–V, SO42−–V, and H2O–V, the V–Cl bond is longer and the potential difference between coordinate ions and vanadium is smaller. Therefore, VO2+ gets easily desorbed with chloride ions and enter the organic phase. At the same time, the hydrogen ions of di-(2-ethylhexyl)phosphoric acid also enter the water phase more easily, which reduces the pH required for the extraction reaction.

关键词: vanadium     black shale     solvent extraction     high acidity extraction    

Engineering the electronic and geometric structure of VO/BN@TiO heterostructure for efficient aerobic oxidative desulfurization

《化学科学与工程前沿(英文)》 2023年 第17卷 第3期   页码 276-287 doi: 10.1007/s11705-022-2242-3

摘要: Particle size governs the electronic and geometric structure of metal nanoparticles (NPs), shaping their catalytic performances in heterogeneous catalysis. However, precisely controlling the size of active metal NPs and thereafter their catalytic activities remain an affordable challenge in ultra-deep oxidative desulfurization (ODS) field. Herein, a series of highly-efficient VOx/boron nitride nanosheets (BNNS)@TiO2 heterostructures, therein, cetyltrimethylammonium bromide cationic surfactants serving as intercalation agent, BNNS and MXene as precursors, with various VOx NP sizes were designed and controllably constructed by a facile intercalation confinement strategy. The properties and structures of the prepared catalysts were systematically characterized by different technical methods, and their catalytic activities were investigated for aerobic ODS of dibenzothiophene (DBT). The results show that the size of VOx NPs and V5+/V4+ play decisive roles in the catalytic aerobic ODS of VOx/BNNS@TiO2 catalysts and that VOx/BNNS@TiO2-2 exhibits the highest ODS activity with 93.7% DBT conversion within 60 min under the reaction temperature of 130 °C and oxygen flow rate of 200 mL·min–1, which is due to its optimal VOx dispersion, excellent reducibility and abundant active species. Therefore, the finding here may contribute to the fundamental understanding of structure-activity in ultra-deep ODS and inspire the advancement of highly-efficient catalyst.

关键词: oxidative desulfurization     boron nitride     vanadium     MXene     intercalation confinement    

标题 作者 时间 类型 操作

Dendritic BiVO4 decorated with MnOx co-catalyst as an efficient hierarchical catalyst for photocatalytic ozonation

Jin Yang, Xuelian Liu, Hongbin Cao, Yanchun Shi, Yongbing Xie, Jiadong Xiao

期刊论文

Coextraction of vanadium and manganese from high-manganese containing vanadium wastewater by a solvent

Zishuai Liu, Yimin Zhang, Zilin Dai, Jing Huang, Cong Liu

期刊论文

Surface modification by ligand growth strategy for dense copper bismuth film as photocathode to enhance

期刊论文

Mechanical properties of vanadium-alloyed austempered ductile iron for crankshaft applications

期刊论文

Highly efficient and selective removal of vanadium from tungstate solutions by microbubble floating-extraction

期刊论文

Spontaneous polarization enhanced bismuth ferrate photoelectrode: fabrication and boosted photoelectrochemical

期刊论文

Enzyme@bismuth-ellagic acid: a versatile platform for enzyme immobilization with enhanced acid-base stability

期刊论文

Crystal design of bismuth oxyiodide with highly exposed (110) facets on curved carbon nitride for the

期刊论文

Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium

期刊论文

Utilization of waste vanadium-bearing resources in the preparation of rare-earth vanadate catalysts for

期刊论文

Vanadium and molybdenum concentrations in particulate from Palermo (Italy): analytical methods using

Diana AMORELLO,Santino ORECCHIO

期刊论文

Vanadium metabolism investigation using substance flow and scenario analysis

Fangfang ZHANG, Huiquan LI, Bo CHEN, Xue GUAN, Yi ZHANG

期刊论文

Synthesis of cobalt vanadium nanomaterials for efficient electrocatalysis of oxygen evolution

Meifeng Hao, Mingshu Xiao, Lihong Qian, Yuqing Miao

期刊论文

Vanadium(IV) solvent extraction enhancement in high acidity using di-(2-ethylhexyl)phosphoric acid with

期刊论文

Engineering the electronic and geometric structure of VO/BN@TiO heterostructure for efficient aerobic oxidative desulfurization

期刊论文